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S u m m a r y .  Starting from any fullerene cage of n carbon atoms it is possible to 
construct a fullerene cage of 3n atoms with a closed electronic shell. This 
geometrical 'leapfrog' transformation leads to the 'magic numbers' 60 + 6k 
(k = 0, 2, 3 , . . . )  for neutral carbon clusters. Symmetry relations are derived for 
the electronic configurations, vibrational modes and numbers of N M R  chemical 
shifts of these closed-shell clusters. All symmetry-related properties of  the 
leapfrog fullerene follow from those of  the parent, without the need for explicit 
construction of  the larger cluster. 
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1. In troduct ion  

Synthesis of C6o and C70 in macroscopic amounts [1] has allowed unequivocal 
determination of  the structures of these molecules [2, 3]. Both are examples of  
fullerenes [4], i.e. of  3-connected polyhedral cages with 12 faces pentagonal and 
all others hexagonal. Such shapes are especially suitable candidates for carbon 
cages Cn because they are finite versions of the graphite sheet in which curvature 
is induced by the pentagons and delocalisation energy is maintained by the 
hexagons. An infinite series of  fullerene cages is mathematically possible - there 
is at least one for every even value of n ~> 20 (with the sole exception of n = 22) 
and the number of possible geometric isomers grows rapidly with n. As research 
groups around the world compete to isolate higher fullerenes [5-7] two ques- 
tions are of  basic importance - the atom counts and the shapes of the stable 
clusters. The present paper deals with one method of  predicting these: the 
so-called leapfrog transformation [8, 9]. 

Geometrically the leapfrog operation is simple. Take any fullerene structure 
of n vertices, cap all faces symmetrically and convert to the face dual (Fig. 1). 
The result is a fullerene of the same symmetry as the original but with 3n 
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Fig. 1. The first five fullerene polyhedra and their leapfrogs: C2o , C24 , C26 , C 2 8 ( T d )  , C28(D2) ~ B32 , 
B38, B41, B44(Zd), B44(D2) => C60 , C72 , C78, Cs4(Td), C84(D2). The intermediate B n is a deltahedron 
that would be a suitable candidate for a giant borane framework 
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Fig. 2. Effect of the leapfrog operation on structural components (faces, vertices and edges) of a 
fullerene polyhedron 

vertices, obtained by jumping over the intervening (3n + 2)-vertex deltahedron ~. 
Remarkably, this procedure always leads to a fullerene with a closed electronic 
shell, regardless of the configuration of the starting fullerene [8, 9]. The leapfrog 
transformation provides partial answers to both questions raised above: closed 
shells occur for n = 60 + 6k (k ¢ 1) in clusters with shapes based on those of 
Cn/3, and the number of leapfrog isomers for a given n is the same as the total 
isomer count for Cn/3. Leapfrog clusters are guaranteed to have isolated pen- 

i Hence the name of this operation taken from the children's game played in many countries but 
named after different animals (a goat in German (Bocksprung), Dutch (bokjespringen), Swedish 
(hoppa-bock), Norwegian (hoppe bukk), Danish (buk), Finnish (pukki-hyppy), Czech (skfin~ni pf~es 
kozu) and Swiss German (B6ckli-Spring/i), but a horse in Italian (cavallina), Greek (Kefld22Eg), 
Japanese (umatobi) and Irish (caitheamh cliob6g), a sheep in French (saute-mouton), a hare in 
Flemish (haajse-over) and a frog in English). The Russian 0fexapaa) and Spanish (churro va) names 
do not appear to have animal associations. 
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tagons (Fig. 2) which is also conducive to geometric stability. An argument 
based on localised bonds [8] suggests that the symmetry of the occupied orbitals 
of Cn (leapfrog) should be just the edge representation for the parent C,/3. In the 
present note this symmetry aspect is explored further. 

It should be noted that the 60 + 6k rule is not exclusive; some closed shells 
occur outside it (notably C7o). A subsidiary rule for five- and six-fold symmetric 
carbon cylinders n = 2p(7 + 3k) where p = 5 o r  6 and k = 0, 1, 2 . . . .  accounts 
for all known non-leapfrog closed shells obtained in Hiickel calculations on 
fullerenes [10]. Fullerenes with other atom counts may be stable, but do not have 
properly closed-shell electronic structures within the Hfickel approximation [11]. 
A target for future theoretical work is the integration of electronic and steric 
factors in a theory that will give uniformly reliable stability predictions for all 
sizes of cluster. 

2. Symmetry and the leapfrog transformation 

A fullerene polyhedron P has n vertices, 12 pentagonal faces, (½n - 10) hexago- 
nal faces and In edges. The leapfrog polyhedron L has 3n vertices, 12 pentagonal 
faces, (3n - 10) hexagonal faces and 9n edges. Symmetry relations between P and 
L are now derived. 

We may define the vertex-, edge- and face representations of a polyhedron 
belonging to a point symmetry group G as the permutation (or a) representa- 
tions (usually reducible) in G generated by structureless points at all vertices, 
edge- or face-centres. These positions fall into one or more sets of equivalent 
points (orbits of G) and so their permutation representations are reducible to 
sums of the o- representations F~ tabulated in [12]. A convex polyhedron is 
topologically equivalent to a spherical shape in which all points lie on a surface 
of arbitrary radius; the distribution of points on this surface determines the 
symmetry. 

It is also useful to define two tangential edge representations Fil(e ) and F± (e) 
which are generated by sets of vectors along and across polyhedron edges, 
respectively. They sum to the n representation: Fj~(e)+F±(e) = F ~ ( e ) =  
F~(e) x F~y, -  F~(e) where Yxyz is the (usually reducible) dipole or cartesian 
representation in G. 

On going from P to L every face is replaced by a similar but rotated polygon 
on the same centre, and new hexagonal faces appear centred on the vertices of 
P (Fig. 2). The face representation of L is thus: 

r , ( f ,  L) = r~(f ,  P) + r~(v, P) (1) 

The set of edges of L comprises one edge perpendicular to each old one of 
P plus three new edges around every vertex site of P. The new edges span a 
(a + n) triplet for each old vertex and so the relationship between F ~ and F ~ 
gives the edge representation of L as: 

r~(e, L) = r~(e, P) + r~(v, P) x rxyz (2) 

Vertices of L can be assigned in pairs to the 3n/2 edges lying perpendicular 
to the old edges of P. Taking the in- and out-of-phase combinations for each 
pair gives: 

F~(v, L) = F¢(e, P) + F ± (e, P) (3a) 
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For any 3-connected polyhedron the perpendicular and parallel edge representa- 
tions are functions of edge and vertex permutation representations (see Eqs. (5' 
and 6') of [ 13]): 

/"ll(e, P) =/"Av, P) x Fxy ~ - to-(e, P) 

Fa (e, P) = FII (e, P) x F, 

where F~ is the antisymmetric representation. Hence the vertex representations of 
L is just the sum: 

/"~(v, L) =/"~(e, P) +/"o-(v, P) x/"~yz x/"~ -/"o-(e, P) x F, (3b) 

Thus all three representations can be computed for L once they are known for 
P. In turn, the tangential representations F± (e, L) and/"ll (e, L) follow from the 
general definitions. Explicit construction of L is not required. 

An application of Eqs. (1) to (3) can be made to C60. Truncated icosahedral 
C60 is the leapfrog polyhedron of the 20-carbon dodecahedral cage. The faces, 
vertices and edges of C20 span the orbitals O12,020 and O30, respectively, in the 
group I h. Thus for P1 = C20 

/ "a ( f ,  P l )  --- Fo-(O12, Ih) 

ra(/) ,  P l )  =/"o-(O20, Ih) 

= Ag + Hg + T~, + T2, 

= Ag +Gg + Hg + T1, + T2u +G~ 

r~(e, P~) = Fo-(030, Ih) = Ag + Gg + 2Hg + T1, + T2~ + Gu + H, 

Application of Eqs. (1) to (3) together with identities specific to the icoashedral 
group generates for L~ = C60: 

Fo-(f, L~) = Fo-(O12, Ih) + Fo(02o, Ih) 

ro-(v, L~) = ro-(O3o, Ih) 

= r ~ ( o 3 0 ,  Ih) 

= r~(O6o , Ih) 

= Ag + Zig + 

+ r~(020,  Ih) x rxyz x F, - r A 0 3 0 ,  Ih) x r ,  

+ e~(o60, Ih) x F ,  - to-(030, Ih) X F~ 

Tzg + 2Gg + 3Hg +2Tlu +2T2, + 2Gu +2H~ 

to-(e, L,) = ro-(O30 , Ih) -au /"o-(O20, Ih) X I'xy z = /"o-(030, Ih) -~ Fo-(O6o, Ih) 

and these agree with the direct symmetry analysis of the 60-vertex cage. 
A second example is the 28-vertex fullerene cage which has two isomers (Td 

and D2) each of which can leapfrog to a plausible C84 structure [14]. Both have 
4 hexagonal and 12 pentagonal faces. For the Ta isomer (P2 = C28, Td) the 
structural components span: 

r~(f,  P2) = r~(04, Td) 

r~(v, P2) = r~(o4, T~) 

Co(e, P2) = F~(06, Td) 

+ Fo(O12, Ta) = 2A 1 + E + T1 + 3T2 

+ 2/"~(0~2, Ta) = 3A~ + 2E + 2T1 + 5T2 

--}-FG(012 , Zd) + Fa(O24,  Td) 

= 3A1 +A2+4E+4T~  +6T2 

Application of Eqs. (1) to (3) or direct inspection of (L2 = C84, Td) gives: 

Fo-(f, L2) = 5A1 + 3E + 3T~ + 8T2 

/"o.(v, L2) = 4A1 + 3A2 + 7E + 10TI + llT2 

F~(e, L2) = 8A1 + 3A2 + 11E + 13T1 + 18T2 
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for the Dz isomers (P3 = C28, D2) and (L3 = C84, D2) 

Fa(e, 

All three examples illustrate 

P3) = 4A + 4B1 + 4B2 -t- 4B3 

P3) = 7A + 7B 1 + 7B2 + 7B3 

P3) = 12A + 10BI + 10B2 + 10B3 

L3) = l lA + llB1 + lIB2+ llB3 

L3) = 21A + 21B 1 + 21B 2 + 21B 3 

L3) = 33A + 31B1 + 31B2+ 31B3 

the general proposition that, given the represen- 
rations for a polyhedron P, all symmetry properties of its leapfrog L can be 
deduced. The derived representations have several uses, as now discussed. 

3. Properties of the leapfrog cluster 

The vertex representation of a polyhedron has several applications in chemistry. 
First, no, the number of copies of the totally symmetric representation in Fo(v), 
gives the number of symmetry-distinct nuclei. Hence for a fullerene no would 
count the distinct chemical shift peaks observable in isotopically dilute (natural- 
abundance) 13C-NMR spectra. 

Multiplication of F~(v) by Fxyz and subtraction of translational and rota- 
tional reprsentations yields the vibrational representation F~ib: 

This, of course, gives the symmetry classification of the normal modes of 
vibration of the polyhedral structure, and also the number of independent 
structural parameters np for the molecule (np is the number of copies of Fo in 
Fvib). Similarly the copies of Fo in F~(e) correspond to independent nearest- 
neighbour distances in the polyhedron. Comparison of Fveb with Fxyz and 2 [rxyz] 
gives the number of IR-active, Raman-active and IR/Raman coincident vibra- 
tional frequencies, np also counts the polarised Raman fundamentals of a 
molecule. All these quantities for L follow from F~(f, P), F~(v, P) and F~(e, P). 

For a polyhedron belonging to a pure-rotation group, Eq. (3) reduces to: 

ro(v, L) = F~(v, P) x Fxy z C~, D,, T, O, I 

and then the number of NMR signals for L, no(L) is simply related to the 
number of structural parameters of P, np(P). In this special case 
no(L ) = np(P) + 2n(/0 where n(#) is the number of independent components of 
the dipole moment in G, i.e. the number of F 0 symmetries spanned by Fxyz. This 
latter relation is valid only if G contains no improper operation. 

Perhaps the most interesting feature of the leapfrog transformation is that it 
allows prediction of the symmetries of the occupied orbitals without explicit 
construction of L. All known leapfrog fullerenes have closed electronic shells, 
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and this has been rationalised (see [8]) by noting that for every L there is at 
least one localised Kekul6 structure that preserves full molecular symmetry and 
can be constructed by placing a double bond on each of the 3n/2 edges of  L 
that cross an old edge of P (leading to a network of contiguous benzenoid 
hexagons centred on every old vertex of  P). Interaction amongst  the localised 
orbitals is expected to stabilise the cluster and delocalise the MOs, but not to 
change the number and symmetry of bonding combinations. 

Another, and possibly more convincing argument that leapfrogging will 
always generate a closed shell can be based on comparison with the bonding 
in 3-connected saturated cages such as the polyhedranes, C,H~.  When the 
carbon skeleton is of  the fullerene type we propose to call the hydride a 
fullerane. The first of  the series, C20H20 , was  synthesised a decade ago [15], and 
the hypothetical C6o derivative C60I"I60 has been the subject of  ab initio calcula- 
tion [16]. 

A carbon a tom in a 3-connected saturated cluster X has 3 atomic orbitals 
(o-+ re) available for framework bonding and n such atoms produce (½n + 2) 
strongly and ( n -  2) weakly bonding cage orbitals, i.e. 3n edge-precise single 
bonds. The total MO representation is: 

r~(v, x )  x e~ ,  = e~(v, y )  + e~(v, x )  

and it can be shown [13] that the bonding half of  the MOs spans: 

e~(e, x )  = r e ( f ,  x )  + [c~(f ,  X) - exyz - exyz x C ]  

whilst the antibonding half spans: 

ell(e , X) = [ r e ( f ,  x )  - e0] x F c + [e~(v, X)  - F0] 

These equations hold for all 3-connected X. 
The link to fullerenes is this. In the 'surface re' system 2 of a fullerene each 

a tom has only a o- radial p orbital instead of the (o + re) triplet involved in edge 
bonding. When X is a leapfrog of  some parent P the representation of this 
basis is, by Eq. (3a): 

Fo(v, L = X)  = F~(e, P) + e ,_ (e, P) 

Now, the n/2 combinations spanning e~(e, P) are wholly contained within 
Fo(e, X), and the n/2 combinations spanning e l ( e ,  P) are wholly contained 
within Fll(e, X)  (note the difference in subscripts here) and so the fullerene 
subset of  the fullerane (a + ~) basis splits into equal numbers of  bonding and 
antibonding orbitals. Hence the leapfrog cluster has a closed shell. 

There is a potential confusion in notation for carbon clusters. Mathematically, the labels ~r, ~, 6 . . .  
refer to the nodal characteristics of basis functions defined with respect to a radial vector. 
Chemically, the same labels are used to describe orbital characteristics with respect to the C-C bond. 
The framework C-C bonds are then ~, and the bonds formed by lateral overlap ofp orbitals are then 
~. In the mathematical sense, however, the basis functions contributing to the Hfickel system span 
representations because they are axially symmetric about a radius. In this paper we use a and ~ in 
the mathematical sense. 
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In the fullerane the a lobes are endo and in the fullerene they are exo, but 
this does not affect the symmetry argument; The exo a system of the fullerane 
is stabilised by interaction with the ligating hydrogens, and the resulting C-H 
bonding combinations can accommodate 2n electrons instead of n. 

Both arguments lead to the conclusion that the bonding combinations of 
radial p orbitals of the leapfrog fullerene L span the edge representation of P: 

Gond(L) = G(e, P) 

For example, the full set of radial p orbitals in C6o spans Fv = F¢(O6o, Ia) but 
the subset of bonding MOs spans F¢(O3o, Ih) which is F¢(e) for the 20-cage. 
The full electronic configuration of C6o has 60 ls 2 cores, 90 a edge bonds and 
30 n edge bonds, i.e. the general formula for the representation spanned by the 
occupied orbitals is: 

Fo~c(L) = F.(v, L) + F.(e, L) + F.(e, P) = 4F~(e, P) + G(e ,  P) 

where the second identity follows from Eqs. (1) to (3) and a theorem which is 
valid for 3-connected clusters (see Eq. (7') in [13]): 

(3-connected) F.(e) x Fxy~ = F.(v) × F~y~ × (Fo + F.) - F~(e) × F. 

4. Iteration of the leapfrog transformation 

As the leapfrog of a fullerene is itself a fullerene, the procedure may be repeated 
to generate larger and larger clusters: 

e ( C n )  ~ Z(C3n ) ~ Zt(C9n ) ---9. t'(C27n)... 

The icosahedral sequence 20, 60, 180, 540, 1620 . . . .  is of particular interest [17], 
but is clearly only one of an infinity of possibilities. Every member after the first 
one has a closed shell, and all symmetry properties of subsequent members are 
implicit in those of the first. Straightforward iteration of Eqs. (1) to (3) gives the 
permutation representations of L '  in terms of those of P as: 

F~( f ,  L ')  = r~( f ,  P) + G(e ,  P) x [ r 0 - r A  +re(v ,  P) x [ro + rxy~ x r.] 

F~(e, L')  = F~(e, P) x [Fo + (Fo -  F,) x Fxyz] + F~(v, P) x [Fo + Fxy z X F,] × Fxy z 

F¢(v, L ' )  = r~(e, P) x [ro- r,l x [Fo- rxy~] + G(v ,  P) x [ r o -  r ,  + rxyA x rxy  

Many equivalent forms of these equations can be derived using theorems for 
3-connected polyhedra [ 13] and definitions of F~, F~ etc. 

5. Conclusion 

The leapfrog transformation offers a systematic way of predicting the shapes, 
electronic configurations and properties of closed-shell fullerenes. It gives start- 
ing guesses for more sophisticated ab initio treatments, but can also aid the 
interpretation of experimental spectroscopic data without the need for explicit 
construction of the cluster. 
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